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Fig. 2 Lift coefficient a) and pitching-moment coefficient
b) for a slender delta wing (aspect ratio AR = 0.78, taper
ratio A = (0.125) vs angle of attack
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Fig.3 Lift coefficient a) and pitching-moment coefficient
b) for a swept wing (aspect ratio AR = 1, sweep angle ¢ =
45°) vs angle of attack

wings, and delta wings were calculated and, as far as pos-
sible, compared with measurements. The agreement is
quite satisfactory. In Figs. 2 and 3, comparisons between
theory and experiments are shown for a slender delta wing
and for a swept wing of 45° sweep angle and taper ratio
1. For the lift coefficients as well as for the pitching-moment
coefficients, the agreement is very good up to high values
of angle of ‘attack. For the drag coefficient of wings having
sharp leading edges, one obtains ¢pr = cra, since suction
forces are zero due to leading-edge separation.
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Cylindrical Heat Flow with Arbitrary
Heating Rates

J. E.-PEYTHIAN*
Makerere University College, Kampala, Uganda, Africa

N this note, Chen’s solution? is extended to the problem of

purely radial heat flow through a hollow cylinder (a € r < b)
under an arbitrary time-dependent heat flux at the outer
surface (r = b) and zero heat flux at the internal boundary
(r = a). The solution should be useful in current aerospace
problems for stations of a missile body not influenced by nose
tapering. The missile’s skin material is assumed to have
physical properties independent of temperature, so that the
temperature T'(r,f) is a function of radius » and time ¢ only.

The basic differential equation and boundary conditions
can be written in the form

197 _ 0T | 19T

PRET W
with
T(r,0) =0 2)
fort =0,a <r <b,and
dTGBY dT(ad)
k e QWM k Y 0 (3)

where Q(t) is the heat flux at the external boundary. Using
the Laplace transform,

Top) = [, et ndt = 2{T0rD) @
these equations become
2P — o' E 9: 2

¢T'=-5+t7% (ag® = p) (5)

with
kT (®,p)/or] = Qp) (6)

and
k[pT(a,p)/or] = 0 o

The operator form of the solution is

T(r p) = Q(p) olgr)Ki(ga) + Kolgr)li{ga)]
P = hlhieh) Kalga) — g0 Ki(gb)]

where I,, I, Ky, K, are modified Bessel functions of the first
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and second kinds.
For Q@) =1 (@ = p™), the solution, A(r,t), has the formal
inverse
ytio
At = f Zo(gn) Ks(ga) + Ko(gr)i(ga)le
2mi

L0
y—io kpqlli(gb)K:(ga) — Ii(qa)Ki(gb)]

where the path of integration lies to the right of all singulari-
ties of the integrand.

This integral can be evaluated as the sum of its residues at

the poles p = 0 and p. = —af.? where =8, are the roots
(real and simple) of
Ji(B8:0) Y1(Bua) — Ji(Bna) ¥1(B:D) = O (10)

for a > 0, and

Ji(Bab) = 0 (1)

fora = 0.
The solution for A(r,t) is

b
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functions in Eq. (8) for large values of p (and ¢) correspond-
ing to small values of ¢&. The resulting transforms can be
evaluated using the result?

_ e . z
o () = aoriete [ ] o
where
nerfe x = Lw in=1 erfe xdx (20)

and
Werfc x = erfec z (21)

The solution for () = 1 for small values of ¢, provided
that r/b is not very small, is

42
A(?‘, t) = m I:Solt + 2r? — b2 — 3a? — 4q? Iogr + (b—2—j— (b2 lOgb — o loga):l -+

If Q@) is continuous and of exponential order, viz.,
limy«Q(He~? = 0, and Q'(¥) is sectionally continuous, then?
T(rp) = {LIQ'O] + QO)}A(r,p) (13)

where A(r,p) solves the problem with Q(¢) = 1.
[Note that Chen' omits the derivative sign in his Eq. (19),
and printing errors also occur in his Eqgs. (18) and (20).]

Use of Eq. (13) and the convolution integral gives the solu-
tion

T0) = QUAEY + [J @'t - narnar ()

- Qa0 + [} et - % e ay

The complete solution is then

T(rp) = Q) {ZLWI)?Z):—)_ [:27" — b* — 30* — 4’ logr + 5

¢~ %P1 (820)T1(8nD) [To(Bur) Y1(B0) — Yo(Bur)T1(Bua)]

a?

(12)

kBnlJ12(Bra) — J1*(BaD)]

1/2 b —
A(r) m}c (g) {2(at>1/2ierfc [Z(a—t)fm] +

at(b + 3r) . b—r (952 + 33r2 + 6br)
oo L ere [2( 1)1/2] + 128b%2

. r 1 ath\ /2
(4at)?'? 43 erfe [ (el )1/2] ... } + 7 { 2 (T) X
. b+ r— 2a . 3b—r—2a
[:'L erfc (W) P + 1 erfc <W) +

. 3b + r — 4a)

The corresponding value of 7, (r¢) for arbitrary heat flux
Q(t), valid for small values of (tb/r), is obtained from Eq. (15),
viz.,

(b2 logh — a? Ioga):'

i J1(82@)J1(8:b) [T o(Bar) Yl(ﬁna) — Yo(Bur)J1(8xa)] } n
i kB [J:2(Baa) — J12(B:b)]

f drQ(t — 7) l:—————sz — -7 Z

Although the case ¢ = 0 can be derived as the limit of Eq.
(16), it probably is easier to rederive the solution from the
beginning; it is

el

( t) _ 1 i Jo(ﬂ,ﬂ‘) ]

2 4 nzl Br75%J o(B1b)

— BT Jo(Bar)
Ffiae-o e T g 20

where

Ji(Bb) = 0 (18)

These equations are valid for all values of {(>0) but converge
rapidly for large values of ¢ only. Often a rapidly convergent
series (or asymptotic series) is required for small values of
time and possibly for 7 = b; in this case, use of the foregoing
formula would be tedious. A more convenient expansion can
be obtained by using the asymptotic expressions for the Bessel

e~ BT 1(8r0)J1(B4b) [T o(Bur) Vi(Bna) — Yo(Bur)S 1(ﬁna)]] (16)

k[le(ﬁna) - J12(Bnb) ]

e < fl e () 5
b2 4 10br — 3r?
LRl O ()

. 9b3 + 20b% -+ 123br? — 33r®
7 erfe 2( )1/2 X

64b2r2
12 erfe [2( )”2]

()

2r

b+r— 2a 3b—1r— 2a 3b —r — 2a
erfc[ 2ar)i e :l-{- or erfe [W]}

(23)

This form for the temperature is particularly useful for
evaluating the maximum temperature gradients and thermal
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stresses that often occur for small values of tb/r for impulse-
type heat fluxes.

The corresponding formula for @ = 0 has the basic solution?
Ay(r,t) with

1 bi\1/2 b —
Az(T,t) “ ]; [2 (-ar—t> 1 erfe (2(—01’;5> 4+

at(b + 37‘)
2(6 3)1/2 erfe <2( t)llz) ‘ ] (24)

and T.(r,t) = Ti(r,t) to this order of accuracy.

It will be observed, comparing Eq. (22) and Eq. (24), that
the first terms of this expansion are independent of the inner
radius of the cylinder. Physically, this shows that, for the
initial temperature changes only, the reflection of the “tem-
perature wave” at the inner boundary may be neglected, and
the temperature may be obtained as if the cylinder were solid.

As time goes on, however, this approximation will get
worse, but for impulse-type heat fluxes it should be sufficiently
accurate to predict maximum heating rates. The first form
for T [Eq. (14)] is useful when @’(¢ — 7) is an impulse-type
function, so that (¢t — 7) is a step function.
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An Alternate Interpretation
of Newton’s Second Law

M. Botraccint*
Unaversity of Arizona, Tucson, Ariz.

Introduction

HE derivation of the momentum equation for variable

mass systems has been reopened recently for discussion.
In these various discussions! two assumptions usually are
made: 1) the classical momentum equations do not apply
to systems of variable mass; and 2) the derivation of the
rocket equation requires two separate control volumes con-
taining a total constant mass.

In this paper it will be shown that, although assumption 2
is a result of assumption 1, assumption 2 denies assumption
1. It will be shown that the classical momentum equation
for a particle is given in an incomplete form and that New-
ton’s equation (in the classical expression) does lead to the
rocket equation.

Assumption 1 thus will be shown to be unnecessary, and
assumption 2 will be replaced by a calculus operation. A
general definition of momentum, valid for Lebesgue measur-
able mass,?2 will be developed. The new definition of mo-
mentum will be shown to be valid for point masses, summa-
tions of mass points, piecewise continuous masses, con-
tinuous masses, and for both time variable and time invariant
masses.

Standard Derivation of ‘“Rocket” Equation

It is customary to define the law of linear momentum in
terms of the mass m;, velocity v;, and the net force F;, acting
on the 7th particle of a system of particles:?

F; = mi(dv;/dt) = (d/dt)(m.v.) (1)
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For a collection of n particles, Newton’s second law becomes
2,: Fi = El(d/dt)(m. Vi)

If the number of particles is time constant, the summation
and the differentiation can be interchanged

in which G is the total linear momentum.

Obviously, the derivation of Eq. (2) requires G to be the
momentum of a system of constant mass. It is possible,
however, to use Eq. (2) on variable mass system by the
following artifice.

Let there be two volumes Y and Yr having a common
boundary. Let Y be the control volume for which the mo-
mentum G is to be found, and let the momentum of the par-
ticles in Yz be Gz. If it is assumed further that the total
mass in the two volumes is a constant, then Eq. (2) applies:

;B = (d/d)(G + Gr) = (dG/dt) + (dGr/dt)  (3)

The second term on the right of Eq. (3) seems to imply that
forces acting on Yz should have an effect on Y. This
physically indefensible result can be removed by letting the
volume Yz approach zero. In the limit, dGx/dt simply be-
comes the rate at which momentum crosses the boundary of
Y. Equation (3) is the expression for the momentum
theorem of variable mass systems.

Equation (3) can be applied to a single particle that enters
Y at time T and leaves at time 7:

1) For time ¢t < T4, Eq. (8) is identically zero.

2) For time ¢ > T, > T4, Eq. (3) is identically zero.

3) At times T, and T, dG/dt = mdv/dt, and dGg/di
represents an impulsive change of momentum on the bound-
ary.

If one defines u(f — 7Th) as a unit step function open
on the left and u(t — T) a unit step function open on
the right, Eq. (3) becomes for a single particle

[l — Th) — ue(t — To)JF: =
@ — Th) — ue(t — To) Ima(dve/dt) +
ot — Tomsv: — 6(¢ — To)ymv; (4)

in which (¢t — T') is the Dirac Delta or unit impulse function.?
It is well known that

(d/dt)[ut — T)] =
Thus Eq. (4) becomes
Ai(Ty,ToO)Fs = (d/dt) [A«(Ty, Totymavi] (5)
in which A4, the closed pulse function, is defined as

0 t< T
Ai(T1,T2:t> =<1 T, >t b~ T1
0 t> 1T,

Now the function A; is nonzero only for particles in the con-
trol volume Y'; thus one can write the equation for a system
of particles by summing over all particles in ¥ and all particles
outside of Y. (This is the division into Y and Yg, except
that now Yz can be any volume sufficiently large to contain
all particles that will be in Yz at any time and any other addi-
tional particles. Yy could, for example, contain all the par-
ticles in the universe except for the particles in Y.)
Thus the momentum equation becomes

i AF; = i [j—t (AimiV’i)jl
i=1

=

it —1T)

Here the interchange of derivative and summation is valid

ZA F; —Zt(ZA m,vt>

i=1

but A; = 1 for particles inside ¥ and zero for particles out-



